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Abstract

In this paper , we consider the problem of finding locations of

several new facilities in an iinbedded tree network with respect to

existing facilities at known locations so as to satisfy distance con-

straints , which impose upper bounds on distances between pairs of

facilities. It is known that the existence of a feasible solution

to the distance constraints is related to shortest paths through an

auxiliary network, which has as. arc lengths the upper bounds on pairwise

facility distances. This relationship takes the form of necessary and

sufficient conditions, termed the separation conditions. We relate

“tight” separation conditions to the solution of multifacility minimax

location problems and efficient solutions to multiobjective inultifacility

location problems. In addition, we provide a proof that the SLP algorithm

of [8] is in fact an algorithm of lowest order of computation for deter-

mining whether or not the distance constraints are consistent.
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1. Introduction

Network location problems involve locating new facilities on a

network, such as a transport network , with respect to existing facil-

ities lying on the network at known locations. For such problems dis-

tances between facilities are of interest: these distances are actual

“shortest route distances” as determined from the network. Associated

with many network location problems is a collection of distance con-

straints. These distance constraints specify known upper bounds on

distances between pairs of facilities (pairs of new facilities, and pairs

of new and existing facilities) so that the facilities will not be too

far apart from one another.

Distance constraints appear to be a recurring feature in network

location problems . In the problem of deciding where to locate a

fire station [18], it may be relevant to place restrictions on the

location via distance constraints so that the response time to the site

of any potential fire may not be too large. The location of booster

pumps in a pipeline system might well involve distance constraints in

order to locate the pumps so that the pressure in the pipeline does not

fall below a certain level. Also, certain minimax location problems on

networks hate an e~uivalent formulation in terms of distance constraints

[8], since typical objective functions in such problems involve dis-

tances between facilities, permitting equivalent formulations with

distances as constraints.

Our work extends earlier results (81 obtained for distance

• constraints for the case where the underlying network is a tree, that

is, it is connected , undirected , has positive arc lengths and has no

cycles. Such networks tend to occur when only a “sparse” network is

L ~~~~~~~~~_ • .  • . .  _
~~~~~~~~~~~~~~~~~~~~~~~~ • ~~~~~~~~~~~~~~~~~~~~~ 
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justifiable because of limited need for the network or, alternatively,

when it is very expensive to provide redundant links (as in some road

networks). In addition, some pipeline, and associated electrical con—

trol networks, are tree networks (31.

We now give a brief overview of our main results; the necessary

notation and definitions appear in Section 2, including the “distance

constraints.” Also we state the “separation conditions”, necessary and

sufficient conditions for a feasible solution to exist to the distance

constraints. It is shown in [8] that in order for the separation condi-

H tions to be both necessary and sufficient for the existence of a feasible

solution to the distance constraints the network must be a tree. Thus in

• this paper we restrict ourselves to the case where the network is a

tree. In Section 3 we establish preliminary results and study “tight

paths”, paths which involve an au.xilary network defined by the distance

constraints. The properties of Section 3 provide the basis for our

subsequent results.

In Section 4 we give necessary and sufficient conditions for a

feasible solution to be an optimal feasible solution to a minimax

location problem , and present an example. Minimax location problems

occur when, for example, new facilities are to be placed so as to mini-

mize the maximum of travel times between given pairs of new facilities,

and given pairs of new and existing facilities. Thus, the new facilities

are to be placed so as to provide quick “service” to existing facilities,

while at the same time being able to provide service to one another. We

list as references a number of papers which consider minimax location

problems on networks (See references [4], [5], [9), [101, [14], [15]).

_  
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In Section 5 we study a multiobjective location problem for which

• it is desired to locate certain pairs of new facilities and certain

pairs of new and existing facilities as close together as possible.

Efficient location vectors to such problems are such that in order for

any new facility to be closer to some facility than it already is, it

must in turn be placed farther from some other facility. This parti-

cular multiobjective location problem is similar in spirit to a problem

in the plane using rectilinear distances studied by Wendell, Hurter and

Lowe [191, and Chalniet and Francis [1]. Other examples of inultiobjective

location problems on networks can be found in (11], [12], [13] and [16].

Also in Section 5 we employ the idea of efficient location vectors

to demonstrate that any algorithm which checks the distance constraints

for consistency (i.e., whether or not the distance constraints have a

feasible solution) is, for the worst case, at least of order ~
2 +

where m and a are the number of new and existing facilities respectively. I -

We further point out that the “SLP” algorithm of (8] is of order ~fl2 + inn,

so that, in a well defined sense, the algorithm is in fact a

algorithm.

Throughout Sections 4 and 5 we rely heavily on properties of tight

paths, which provide the underlying unifying principles in our work.

I
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Section 2 Notation , Definitions, and Statements of Results.

We suppose we are given T, an imbedded undirected tree having

positive arc lengths, such that the distance d(x, y) between points

x , y c T is the well-defined shortest path distance and is a metric ,

as discussed in [5]. We are given existing facility locations

a1, a2, . . . ,  a in T. We wish to find new facility locations x1, . . .,  x0
in T, where x~ is the location of new facility i, i = 1, ..., in.

As in [6], given points x,.y ~ T, we define the line L(x, y) as the

union of all points in the shortest path between x and y; equivalently ,

L(x ,y) [z ~ T: d(x,z) + d (z ,y) = d(x,y)}. In addition, given a col- H

lection of points P = ~P1, 
~~~~~~~~ 

P~ } contained in T, we let H(P) denote

the convex hull [6] of P, the smallest (iznbedded) subtree of T

containing P. Corresponding to the a existing facilities and in new

facilities, we are given a set of Distance Constraints, which for

convenience we refer to as DC, as follows:

d(x., xk) ~~, 
b
i~ ‘ 

(J, ~ £ ‘B’ (2 1)
a.) ~ c1j Ci , j ’j  ~~ ‘C’

where the b. and c.. are known positive constants. We remark that

it need not be the case that the set ‘B includes all possible pairs of

new facility indices, nor includes all possible pairs of new and

• existing facility indices.

Corresponding to DC, we define Network BC (NBC) as the undirected

network having nodes E 1, ~~~~~~~~ 
E~~, N 1, ~~ 

for every (j, k) 
~ ‘B ’

there is an arc (N
3

, Nk) of length b
i k between nodes and Nk ; for

every (i, j) c there is an a.. c (N1, E~) of length c~
. between nodes

N. and E.. We further assume that the sets I and I are such that
1. B C

NBC is connected , as otherwise DC decomposes into independent sets of

cobstraints which may be analyzed separately .

4
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Given a node-path between any two nodes f~ and fq in NBC , we denote

the path by P(f~ fq) and denote the length of the path by LP(f ~~ f q ) •

We define~~(f~ fq) to be the length of any shortest path in NBC between

nodes f~ and fq~ Subsequently, unless we specify otherwise, it should

be understood that any path w’ :efer to is a simple path between some

two nodes E and Ep q

The following result is established in [8]:

Theorem 2.1 DC is consistent if and only if

d(a~~ aq) ~~~~~~ Eq)~ 1 ~ < q ~ a. (2 .2)

The inequalities (2.2) are termed the Separation Conditions (8],

since each term on the right specifies an upper bound on how separate

• two existing facility locations can be. Except when stated otherwise ,

• we assume throughout this paper that the separation conditions hold, and

thus (equivalently) DC is consistent.

We call a path P(E~~ E4
) between E~ and Eq 

in NBC a ~ight path if

LP(E~~ Eq) = d(a~ aq). We note tha t since we assume DC is consistent,

it necessarily follows if P(E~~ E4) is a tight path, that LP(E~~ E g ) ~~~~~~~ E q)~

Any path P(E~ Eq) for which LP(E~~ Eq) > d(a~~ a
4
) is called a

slack path, or loose ~~~~~~~~~~~

We say that new facility i is in a tight path if there exists at

least one tight path containing N
1
. Every path containing N1 is slack

if there is no tight path which contains N1.

The motivation for the above terminology is due to a string network

representation of NBC. This string network is also useful for obtaining

problem insights. When knots representing nodes E~ and Eq are pulled as

for apart as possible , the distance between the two knots is~~(E~~ E4
).

If then the string network is placed upon the tree T,

5
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i.e. the strings only lie on arcs of T, a path is tight when it is

necessary to pull the string network tight in order to place the knots

representing E~ and Eq on a~ and aq respectively, while a path is slack

if the string path must literally be slack when the two knots are placed

to coincide with a and ap q

A priori, one might think that the occurrence of a tight path would

be rare . However, we shall see in Sections 4 and 5 that tight paths

occur in a quite natural way when the separation conditions are used in

the analysis of minimax and of efficient location problems . Further,

the notion of tight paths permits the specification of necessary and

sufficient conditions for DC to have a unique solution.

Section 3 Preliminary Analysis and Properties of Tight Paths

In this section, we establish some preliminary lemmas , aii4 then

present some properties of tight paths . We will find the following

three lemmas of use in our analysis. The proof of Lemma 3.1 can be

found in [7].

Lemma 3.1 Given a , b , x ~ T with d(a, b) = a + 3, d(z , a) = a and

d(x, b) = 3, if d(y , a) ~~. a and d(y, b) ~ 3, then x = y.

Lemma 3.2 Given a, b ~ T, d(a, b) = a + 3, the inequalities d(x, a) ~ a,

and d(x, b) ~ 3, are consistent if and only if they have a unique

solution and the inequalities hold as equalities.

Proof: By hypothesis and the triangle inequality , there exists x ~ T

where d(a, b) ~ d(a, x) + d(x, b) I a + 3 = d(a, b), which with the

hypotheses, clearly implies d(a, x) = a and d(x, b) = 3. Lemma 3.1

implies uniqueness. The proof of the converse is trivial , and we omit

it.

Lemma 3.3 Given x0, xr,.l e T and d(x0, xr.~~
) = b 1 

.t’ b2 
+ ... +

the inequalities

6
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d(x
1, x~÷1

) ~~ b ..~1 , i = 0 , ..., r , (3.1)

are consistent if and only if they have a unique solution and

d(x~, x.÷1) = b
~+1 

, i = 0, ..., r. (3.2)
Further,

~ L(x~~1, x~+i ) , i = 1 , ..., r. (3.3)

• Proof: Given (3.1) is consistent, and using the triangle inequality and

(3.1) for any j ,  j  = 1, .. • ,  r,

d(x,~, x3
) ~ d(x0, x1) + . . .+ d(x. 1, ~c.) ~ b, + ... + b. a.

and

d(x., Xrs.i) ~ d(x., x~~1
) + • + d(x~ , x~~1) ~ b .~ 1 

+ . ..+ b~~1

Further, it is clear that d(x0, x~~1) = a. + 3 ..

- t - Define y0 = x0 , y
~~.1 

= 
~~~~ 

and suppose

d(y1, y 1) ~~ b~~1 , i = 1, ..., r. (3.4)

Using (3. 4) and the triangle inequality , we conclude for any j ,

j = 1, .. ., r, that d(y0, y.) ~ a., and d(y., ~~~~ ~ 3. .

Since x0 = y
0 and x~~1 = 

~~~~ 
it follows that d(x0, y.) ~ and

~~~~~ X r.$.j  ~ 3~ . Lemma 3.2 now implies y .  = x
3 , j  = 1 , . . . ,r. Repeated

use of the triangle inequality gives b1 
+ b

2 
+ • . .  +b~~1 

d(x0, Xn+i)

I d(x0, x1) + ... + d(X
r~ 

x~~1
) ~ b1 

+ ... + b~~1, from which it

follows, using also (3.1), that (3.2) is true. We omit the (trivial)

proof ~f the converse.

To show (3.3), for any i, note, in either case , that

b1 +b 2 + ... +b ~~1 d(x03 x~~1)

< d(x 0, x~_ 1 ) + d(x
~_ i , x~+~

) 1. d(x~+, ,  x~~ 1) .  (3.5)



I

! ~~~~~~~

But then
d(x 0, x1_ 1 ) ~ b1 

+ ... + b
~_j,

d(x~_ 1, x~÷j
) ~ b~ + b~~1 (3.6)

~~~~~~ x~~ 1) I b~+2 + ... + b~~1.

Using (3.5) and (3.6), it follows that d(x1_1, x1~ 1) = b
~ 

+ b
~+i, 

which

along with d(x
~_ 1, 

x1) = b1 and d(x1, x~~1) = b.~~1, implies (3.3).

• We now relate unique locations to tight paths. By definition, new

facility i is uniquely located if it has the same location in every fea-

sible solution to DC. Since we later refer to a collection of facilities ,

which contains possibly both existing and new facilities , being uniquely

located , we note that existing facilities are uniquely located by definition.

We now state Property 3.1 , the proof of which follows from Lemmas 3.4

and 3.5 below.

• Property 3.1: New facility k is uniquely located if and only if Nk lies

on at least one tight path P(E~ Eq)~

As an immediate consequence of Property 3.1 we have

Corollary 3.1: DC has a unique solution if and only if lies on at least

one tight path in NBC for k = 1, ..., in.

We now present Lemmas 3.4 and 3.3.

Lemma 3.4: If Nk lies on at least one tight path P(E~~ Eq) tn NBC , then

new facility ii is uniquely located.

Proof: Index the nodes in the tight path P(E~~ E4
) as

(f0, f1, ~~ “‘er’ f~~1), where f0 = E~, f~~1 = Eq and each ~~ 2 ~ j  ~
is an N or E node. (We note that since no two E nodes are adjacent in

NBC , no two adjacent nodes in (f0, f1, ..., f~~1) are E nodes.)

B

_ _ _  - •• _ _



-
_----

~~

Letting b
3 
be the length of arc (%_ ~~ f~)~ j  = 1, ..., r + 1;

since P(E~~ E4
) is a tight path we have

d(a~~ aq) = b
1 

+ b
2 

+ ... + br.s.i~ 
(3.7)

Since DC is consistent, there exists a location vector

S X = (x 1, x2, ..., x~) which satisfies the distance constraints .
Let j  be arbitrary , 0 

~ 
j ~ r.

If f. = N(.) and f~~1 
= E(~~1)~ then ( ( j ) , (j+1)) C and

d(x(J)~ a(J+l)) ~ C ( j ~~~~(j ~~ j )  
b~~ 1. (3.8)

If f~ = E(~) and f~~1 = N (~~1) ~ then ((j+1), ~~~ C IC and

d(a(~)~ X
(~~~~~)

) d(x
(~÷1)~ a(~)

) ~ C (j + 1 )  (f l  
b~~ 1. (3.9)

If f. = N(.) and f~~1 
= N(.~ 1)~ then ((j), (j+1)) c 1B and

d(x
(J)~ 

x(j+1)) ~ b(~)(~~1) b~÷,. (3.10)

But then, from (3.7), (3.8), (3.9), and (3.10), the hypotheses of

Lemma 3.3 are satisfied and so new facility k is uniquely located .

The conclusion now follows.

We next establish the converse of Lemma 3.4.

Lemma 3.5: If new facility k is uniquely located then Nk lies on at

least one tight path P(E~~ Eq )  in NBC .

Proof: We shall show equivalently that if every path containing Nk is

slack, then there exist solutions to DC with distinct locations of new

facility k, where, without loss of generality, we let k = 1. Assume all

• paths through N1 are slack. It is then the case that any such path with

“least” slack has positive slack. That is. there are existing facility

nodes, taken to be E1 and E2 without loss of generality , and a path

~ P(E1, E2) which Contains N 1, such that, with d1, d(a1, a2),

1112 
- d12 > 0 and , for ~~ E5 and Er and any path ~(E5, Et)

containing N1, with d5t a d(a , at), it is tr~ie that

9
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~
3st ~ 

+ d5~ . (3.11)

Since P12 has least slack , it is a shortest path through N
1

joining E1 and E2 and thus 1112 =~j(E1, N1) +$.$E2, N1) .  As a notationa l

simplification, we let ii~ S(E 1, N 1) ,  i = 1, 2.

Let DC
~ , 

i = 1, 2, be the set of distance constraints consisting

of DC in addition to the constra int d(x1, a~) ~ 
y1. We note that any

feasible solution to DC ., , i = 1, 2, is a feasible solution to DC. In

what follows we show that by proper choice of y~ , DC
~ 

is consistent,

i = 1, 2, and that if is feasible to DC1 and X
2 is feasible to DC2,

th:n x~~and x~ are distinct, where x~ is the first component of X
1,

Let NBC . be the network associated with DC.. We note that NBC .
1 1. 3.

differs from NBC only in that it contains the additional arc between

nodes E~ and N 1 of length y~ . Label this additional arc ai.

Let E and E
~ 

be any two existing facility nodes in NBC
1 and

let be a shortest path in NBC~ of length 11st’ joining E5 and E~
.

We shall show that if is positive and if

— 3 , (3.12)

• then,

11st ~, 
d
3~ , (3.13)

— and thus , due to Theorem 2.1 , DC1 is consistent. We shall

show that (3.13) holds when i = 1. Due to symmetry , the case when i = 2

will follow.

If P5~ contains only arcs which are arcs of NBC , i.e., P~ does not

L contain a~, then (3.13) is certainly tnae since the separation conditions

hold for DC. Thus suppose P~ contains a1 (and hence contains N1
) .  

~~
can be decomposed as = 

~~~ 
a1, P

2
), where P1 and ~2 

are (possibly

- ~____t- — - —- -• - ---•- —•
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empty) paths joining E5 and E1, and N1 and E
~~, 

respectively . Since

is a shortest path, neither P1 nor P2 contains a1, and thus P1 and P2

(when non-empty) contain only arcs which are arcs of NBC. The length of

~~ = + + 
~~~ 

and using (3.12) we obtain

LP5~ ~ ~P1 +2. - 3 + LP2, or

(3.14)

Noting that the right hand side of (3.14) is the length, ‘~st’ 
of a

path, 
~~~~~~~ 

in NBC between E5 and Et which contains N1, (3.13) follows

• from (3.11) and (3.14). (We remark , to motivate the requirement (3.12),

that if, say, 
~ 

- 3, then + £
2 

< + Z2 - 3 = d12 : but

+ is the length of a path in NBC1, not entirely contained in NBC,

and so Theorem 2.1 would imply DC1 is inconsistent.)

Define the positive quantity S = iain(2 1, 22, d12}, and let be

the positive quantity, which we note satisfies (3.12), defined as

= rriax(~/3, L~ 
- 3}, i = 1, 2. Since DCL is consistent, let X

3. be a

feasible solution to DCi, and let x~ be the first component of

Xi, I 1, 2.

For x~ we have d(a1, x~) I = max(5/3, Li 
- 3}, and so the

triangle inequality gives d(a2, x~) � d12 
- d(a1, x~) ~ d12 

-

max{5/3, £ j  - = minId12 
- /3~ d12 

- Li 
+ 3J. Noting that

- L
i 

+ 3 = £
2 
we obtain

d(a2, x~) �~ min(d 12 
- ~/ L~}. (3.15)

For x~ we have

d(a2, x~) ~ ~2 
max{5/3, £2 

- 3}. (3.16)

Using the definition of c, it follows that the right hand side of (3.15) is

• strictly larger than the right hand side of (3.16) and thus x~ and x~ are

distinct. Noting that X~ i = 1, 2, is feasible to DC completes the proof.
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We can now draw some additional conclusions about tight paths.

Property 3.2: If P(E~ Eq) is a tight path, then the nodes representing

facilities in the path occur with the same ordering and spacing in the

path as do the locations representing the facilities in L(a~~ aq).

Further, every facility represented by a node in P(E~~ Eq) is uniquely

located .

• Proof: The proof is an immediate consequence of Lemmas 3.3 and 3.4.

We emphasize the fact that the knowledge of a tight path immediately

identifies the location of every new facility represented by a node on

the tight path. For example , if P(E1, E3) = (E1, N1, N2, £2, N3, £3) is

a tight path , with c11 = 2, b12 = 3, c22 = 1 , c32 = 4, c33 = 2, then

d(a1, a3) = 12, and so new facility 1 would be located in L(a1, a3) such

that d(x1, a1) = 2, new facility 2 would be located in L(a1, a3) such

that d(x2, a1) = 5, and new facility 3 would be located in L(a1, a3) such

that d(x3, a1) = 10.

We now consider the problem of determining when an arc lies on a

F tight path. As an arc lies on a tight path if and only if it is not the

— case that all paths containing the arc are slack , we consider the

equivalent problem of determining when an arc lies only on slack paths.

Property 3.3: Let DC be consistent. Let (f., f.) be any arc in NBC, of

length ~~~ whose length is reduced by some positive amount ~~~. Let

DC5(NBC5) be the distance constraints (network) obtained from DC(NBC) by

replacing ~~ by e
13 

-

(a) Every path containing 
~~~ 

f~ ) in NBC is slack if and only if C can

be chosen (with C > 0) so that DCC is consistent.

(b) Whenever every path containing (f., f.) is slack , s can be chosen
• 

. 
(with s > 0) so that DC~ is consistent and at least one of the following

is true:

12
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Ci) at least one path in NBC
5 
containing (f~ f~ ) is tight ;

(ii) the length of 
~~~ 

f~ ) in NBC
5 
can be reduced to zero.

Proof: Assume C can be chosen (with c > 0) so that DC5 is consistent.

Theorem 2.1 then implies the separation conditions hold for DC5. If at

least one path , say P(E~~ Eq)~ in NBC which contains ~~~ 
f~) is tight,

then d(a~~ aq) = LP(E~~ Eq)~ so that reducing e1~ by c would give

LP5(E~~ Eg
) a LP (E~~ Eq) 

- s < d(a~ aq). But LP5(E~~ Eq) is the length of

P(E~~ Eq) in NBC5 , and hence a separation condition for DC5 is violated

for any 5 , £ > 0, giving a contradiction. Hence every path containing

(~~~~‘ f~) in NBC is slack.

Conversely, assume every pa th con taining 
~~~ 

f~) in NBC is slack,

so that

LP (E~~ Eq) - d(a~~ aq) > 0 (3.17)

for every path P(E~~ Eq
) containing 

~~~ 
f~)~ and define s’ to be the

minimum of the left side of (3.17) over all such paths, giving s’ > 0.

Let ~ = Inin(5’ , e..) > 0. Since any path P(E , E ) containing 
~~~~~~ 

f.)p q
has its length reduced to LP5(E~~ Eq) LP(E~~ Eq) 

- s, the inequality

d(a~ Sq) ~ LP5 (E~~ Eq) (3.18)

is equivalent to

C 5~ 
L~(E~~ Eq

) - d(a~~ aq) .  (3.19)

The definition of e’ and s < s’ imply (3.19) is true, and so (3.18) is

true. Further, if c = s’, then (3.19) holds as an equality for some

?(E~ Eq)~ implying its length in NBC~ is zero, giving (b) - Ci). The

case c e2.,j gives (b) 
- (ii). (Parenthetically, we note that the

largest C can be and still have DCC Consistent is thus clearly

aax(C ’, e1~).) As any path P(E~ Eq) in NBC
5 
not containing (f t ,  f~)

has its length unchanged from that in NBC, DC consistent and

Theorem 2.1 implies the path satisfies its separation condition for DC5.

13
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Hence, with (3.18), the separation conditions for DC5 are satisfied, so

Theorem 2.1 implies DC5 is consistent, completing the proof.

Section 4: A Minimax Location Problem Given m new facilities at locations

X,~ to be determined , existing facilities at known locations a1,

.., an, and index sets 1B’ 1c as before, the minimax location problem
may be stated as follows :

CPMM) minimize z

subjec t to

v.k d~~J~ 
xk) ~ z Ci~ k) ~ ‘B

w
3~ d(x1, a.) < z , Ci , i~ ~

Here the V
ik 

and w~ . are given positive weights, and the problem becomes

one of locating the new fac ilities so as to minimize the maximum of the

weighted distances. To define the network BC of interest for this

problem , define bj k  = 1/V.k for (j, k) ~ ‘B’ and define C . .  = 1/w1. for

(i,j)sI~ .

The following result for this problem is proven in [8]:

Lemma 4.1: The minimum objective function value for (PMl~) is given by

= max[d (a~~ aq)/~~ (E
p~ 

E
q

) : 1 ( p < q < a).

As is pointed out in [8], one way to solve the minimax problem is to

use Lemma 4.1, set z = z~ in the constraints of the problem, and use the

SLP algorithm to construct a feasible solution to the constraints; any

such feasible solution is optimal.

Our interest here is to explore relationships between Lemma 4.1

and tight paths. To this end, it will be convenient to denote by NBC(z)

the network obtained from NBC by multiplying every arc length in NBC by
• 

z. We now state

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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Property 4.1: Let (X, g) be a feasible solution to (PMI).

(a) (X, a) is an optimum feasible solution to (P?fl) if and only if at

least one Pith in NBC (z) is tight, that is , for some P(E~ ~~
d(a~ 1 

~~ 
= a LP(E., 

~k~
•

(b) For any such tight path, the facilities whose nodes lie on the path are

uniquely located , and their locations have the same ordering and spacing in T

as their nodes have in the corresponding path in NBC .

Proof: (a) Suppose P(E
1
, Bk) is a tight path , so that

d(a., ak) > z LP(E
J~ 

Bk). (4.1)

The definition of S)(E~ Ek) and a > 0 give

a LP(E)~ Ek) > a ~~~~~ Bk), (4.2)

while 2* the minimum objective function value (by Lemma 4.1) gives

-t . a ~~(E., Bk) > z*~~~(E~ ~k~
• (4.3)

Hence Lemma 4.1 gives

z*~~~(E~. Bk) ? [d(a ~~ ak)/~~(E ., Bk~~~
’
~~j~ Bk)

= d(a~ ak). (4.4)

Thus we conclude the inequalities (4.1) through (4.4) all hold as

equalities , implying a = z*, and hence (B , a) is an optimum feasible

solution .

Conversely, suppose (X, a) is an optimum feasible solution. L e a

4.1 then gives, for some P(E
J~ ~k~’

z = z* = max[d(a~. aq)/c~~(Ep Eq) : 1 ~ 
(

= d(a~~ ak)/~ )
(Bj~ Bk)

= d(a~~ ak)/LP(Ej, Bk),

implying P(E~ 1k~ 
is a tight path in NBC(s).

(b) The proof is i ediate from (a) and Properties 3.1 and 3.2.

15
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We now present an example. Suppose a tree T is given as shown in

Fig. 1, with three new facilities and three existing facilities

(at a1, a2, and a3). ‘B = ((1, 2), Cl , 3), (2 , 3)}, 1c = t (’~~ ~~~~~~

(2 , 2), (3, 3)), v12 = 1, v13 = 10 , v23 = 1, w11 = 10, w22 = 2, and

w = 5. Fig. 2 illustrates NBC with b. = 1/v . and c.. = 11w. . .33 ‘3
It is readily verified that ~~(E1, E2) = 1.6,~~~ (E1, £3) = .4,

~~(E2, E3) = 1.7, d(a~, a2) = 5, d(a 1, a3) = 6, and d(a2, a3) = 7.

Thus Lemma 4.1 gives z~ = max(5/l.6, 6/.4, 7/1.7] = 15 d(a1, a3)/~~(E1, E3).

Hence, in NBC(z*), Property 4.1 implies the path (E1, N1, N3, E3) L3 tight,

with total length (.1)(15) + (.1)(15) + (.2)(l5) = 6 = d(a1, £3)~ and so

new facility I and new facility 3 are uniquely located at x~, x~ respectively

in L(a1, a
3

) ,  where x~ is the point in L(a1, a3) such tha t d(a 1, x~) = 1.5,

and x~ is the point in L(a1, a
3
) such that d(a1, ~~) = 3. It is easy to

verify that N2 lies only on loose paths in NBC(z*), and hence new facility

2 is not uniquely located. In fact, the inequalities 2d(x~, a2) < 15,
- 

- ld(x~, at) < 15, and 1d(x~, x~) < 15 permit x~ to be any point in the

- - tree T. This example illustrates the fact that the knowledge of tight

paths in NBC(z) permits one to determine immediately some new facility

locations for (PMH), as well as identify those facilities which have

“critical” locations, in the sense that a change in their locations

would cause z* to change as well.

_ 
- 

16



‘
~~ ~~~~~~~~~~~~ - - - - — .-~-- 

-

I

t

Figure 1. Tree for ~Example Minima~c Problem

Figure 2. NBC for Example Minimax Problem
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Section 5 Efficient Location Vectors

As before we suppose existing facility locations a1, ..., an to be
given, and that new facility locations x1, are of interest.

Given any vector of new facility locations Z = (z~ , ..., z~), we denote
by D(Z) the vector having the entries d(z~ Zk) for (j, k) ~ ‘B’ and

d(z1, a2
) for ~~~~~, i~ ~ 

1c’ where 1B and ‘C are given pairs of facility
indices. A location vector Z is dominated if there exists a location

vector Y such that D(Y) < D(Z) and D(Y) ~ D(Z). A location vector Z

which is not dominated is called efficient. Thus Z is efficient if and

only if D(Y) < D(Z) implies D(Y) D(Z). Hence, whenever Z is efficient,

if a location vector X is given such that some entries in D(X) are

(strictly) less than the corresponding entries in D(Z), then it mus t be

true that at least one entry in D(X) is (strictly) greater than the

corresponding entry in D(Z). One can consider the problem of finding

efficient location vectors as a multiobjective optimization problem,

with one optimizer for every entry in D(Z); the optimizers can agree

that dominated location vectors are not of interest, thus leavi.ng the

efficient location vectors to consider. Even if there is only a single

optimizer, and his objective function is strictly increasing in each

entry of D(Z), then every location vector which minimizes his objective

function is clearly efficient, so that knowledge of efficient location

vectors nay facilitate a sensitivity analysis.

As an example of such an objective function, suppose positive

“weights ” Vjk  and are given, and define f(Z) by f(Z) =

I(V .k d(z~~ Zk
) : (j, k) ~ 1B~ 

+ I{w.~ d(z~
, a.) : (i, i~ ~

Picard and Ratliff [17) have recently presented a means of finding new

facility locations in a tree to minimize f(Z), and discuss related

18 
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literature, which is extensive. Whenever a single optimizer has a

continuous objective function (such as f(Z)), then the compactness of

T and the extreme value theorem asserts there will always exist a loca-

tion vector optimizing his objective function, in turn implying that

efficient location vectors always exist for nonpathological problems .

A further discussion of multiobjective location problems on networks can

be found in [ii], [12], [13], and (16].

Given a location vector Z, we let U = D(Z) and define the distance

constraints of interest by DCX) < U, where the entries in U define the

bik and ~~ 
by bjk = d(z~ Z

k
) for Ci, k) ~ ‘B’ and c~ = d(z~ , a~ ) for

~ i~’ j~ ~ We use the bjk and ~~ to define NBC in the customary

manner. As befo re , we may assume NBC is connected , for otherwise the

problem of finding efficient location vectors decomposes into independent

subproblems . Further, we note that DC is always consistent, as Z is

certainly feasible to DC, and hence, by Theorem 2.1, the separation

conditions are always satisfied. For convenience, for any location

vector Z, we denote by A.(Z) the collection of locaLons of uniquely

located facilities whose nodes are adjacent to N, in NBC. We denote

by H(A~(Z)1 the convex hull of A~(Z)~ the imbedding of the smallest

subtree of T spanning all the elements of A~(Z).

With the above definitions we can present a family of equivalent

conditions for a location vector Z to be efficient.

Property 5.1: Given a location vector Z used to define DC and NBC, the

following are equivalent:

(a) 2 is efficient,

(b) Each N, is in at least one tight path in NBC ,

• (c) 2 is the unique solution to DC,

Cd) a. c H[A1(Z)J 
for i 1, ..., a.

19
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Proof: The equivalence of (b) and Cc) is a direct consequence of

Property 3.1 and the fact that Z is always a feasible solution to DC,

while (c) clearly implies ( a ) .  To show (a) implies (b ) ,  suppose some

is not in a tight path. Property 3.3 then implies some entry in U = D(Z)

can be reduced and the resultant distance constraints will still have a

feasible solution, say Y. But then clearly DCY) < D CZ ) and D(Y) �

contradicting the fact that 2 is efficient. Hence (a), (b), and (c) are

equivalent. It can be seen that the proof will be complete if we show

(b) implies Cd) and Cd) implies Cc).

To show (b) implies (d), suppose N
~ 

ts in some tight path P. Let

f1 and f2 be the nodes adjacent to N. in P, so that C(f1, N1), (N1, ~~~
is a subpath of P. Since f

1 
and f

2 
are in the tight path P, by Property

3.2 the facilities represented by f
1 

and f
2 
are uniquely located . We

may let y
1 
and y2 

denote the unique loca tions of f 1 and f2 respectively. 
—

Thus it is clear that y1 and y2 are elements of A~(Z). By Property 3.2,

~ L(y1, y2), and by definition of the convex hull, L(y1, ~~ ~ - M ~~~ C2 ) ) - .

Thus it follows that a1 ~ H(A~
(Z)). To show Cd) implies (c) ,  suppose

z. ~ H(A.(Z)] and let f~ and f2 be nodes adjacent to N~ in NBC , where

f1 and f2 represent facilities with unique locations y1 and ~2’ 
respectively,

such that a .  ~ L(y1, 72)C..T. Thus d(y 1, 
~~ 

= d(y1, a.) + d(z1, y.,).

Now for any feasible solution X to DC we know d(y1, x~ ) < d(y 1, z1) and

d(y2, x~) < d ( y 2, z1). But then because f 1 and f2 are uniquely located ,

Lemma 3.2 implies a1 a., for i 1, ..., a. Hence X = 2, so Z is the
- 

— unique solution to DC , completing the proof.

As an example , suppose we again have three existing and three new

facilities, and use the tree of Fig. 1. Suppose the entries of D(Z) are

20
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given by d(z1, a1) ,  d(z1, a3) ,  d(z2, a1) ,  d(z2, a3), d(z3, a 1), d(z3, a2)

d(z1, 22) ,  d(z1, 23), and d(z2, z3). Suppose the location vector Z is

as shown in Fig. 3. Fig. 3 and the above distances gives NBC as shown

in Fig. 4. As the path (E1, N1, E3) in NBC has length 6 = d(a1, a3),

N1 is on a tight path. Further, the path (E1, N2, E3) also has length

6 = d(a1, a3) ,  so N2 is on a tight path. However, it can be verified

that every path containing N3 is slack, so the vector 2 = (z~, 22t  23),

is dominated. It is easily verified however that if is changed so

that either a3 e L(a1, a2) or z3 C L(z1, 22) ,  that the new location vector

will be efficient, as N3 is on at least one tight path, or , equivalently,

2
3 

C H({a1, a2, Z 1, 221).

As a final application of the idea of efficiency, let us choose an

efficient location vector problem and an efficient location vector Z for

which U = D(Z) will have m(m—1)/2 + inn entries. Suppose we subtract any

positive quantity C from an arbitrary entry in U to obtain a vector

giving U
~ 

< U and U
C ~ 

U. The distance constraints DCX) < U~ must then

be inconsistent, as else X would dominate 2. Now given the constraints

D(X) < U~, if we do not know which entry in U has been reduced by C to

obtain U
~
, then any algorithm we apply to check if 13(X) < U~ is Consistent

must examine all of the m(iii- 1)/2 ~ inn constraints , since any one of the

constraints can cause inconsistency. Hence any algorithm to determine

if DCX) < is consistent is at least of order in~ + inn . Thus we have

Property 5.2: Any algorithm to determine whether or not the distance

constraints of Section 2 are consistent is (for the worst case) at least

of order a2 + inn.

As is pointed out in (8 ) ,  the “Sequential Location Procedure” presented

in [8] to check the consistency of DC is of order a2 + mu , and thus
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Property 5.2 implies it is in fact an algorithm of lowest order for

• checking consistency .

I
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